亲,双击屏幕即可自动滚动
第六百三十二章 汽车发展趋势
    等马斯克走后,孟谦直接约了比亚迪的王川福和吉利的李叔福,因为很多事情时间不等人,这两家公司最近动作也挺频繁的。

    “听说比亚迪跟吉利都开始加大电动车的投入了。”

    “今年欧米大力推动电动汽车,哥本哈根会议后电动汽车更是成为了行业热议的话题,而孟总是知道的,我一直相信电动汽车的明天。”大概是因为李叔福在场,王川福的话说的明显收着。

    其实两人知道同时被约的时候还有点意外,这会儿两家公司逐渐对等起来,好歹是对手,哪怕大风集团都是大股东,但孟谦说今天是来聊未来规划的,竞争对手坐在一起聊未来规划,怎么都感觉不对劲。

    果然,李叔福也只是非常官方的客套了一句,“在电动车的发展上我们还有很多地方需要向比亚迪学习。”

    知道两人的小心思,所以孟谦直入主题,“今天找两位过来首先想告诉两位我准备跟马斯克和解了。”

    孟谦大概把事情说了一下。

    “特斯拉今年在电机系统上的研发成果确实很有价值。”关于特斯拉的技术,李叔福还是比较服气的,毕竟特斯拉全身心投入纯电动车的时候吉利都没怎么研发这个方向。

    但王川福明显就有点不甘心了,“其实我们跟特斯拉有很多专利上的重叠,最近也在加速专利申请的事情。”

    “其实正是因为比亚迪这边的发展,我才想着去把特斯拉的专利搞过来,这样两边一结合,我们就有机会冲击更加领先的技术。”

    两人点了点头,认可了孟谦的说法,然后就等着孟谦说下去,毕竟他们都不知道孟谦找他来到底要谈什么,结果孟谦直接转移话题了,“这个事情就是跟两位先打个招呼,具体情况等我跟马斯克这边达成最后的协议后再说,而且电动车的具体发展最终肯定是要靠两位的。

    我今天找两位来主要是为了另外一件事情,今年我们看到了电动车会成为汽车发展的一个趋势,也应该看到了汽车发展的另外一个趋势。”

    王川福和李叔福对视了一眼,并没有想到答案,而且上一个话题就这么结束了两人还挺懵的,面对两人疑惑的眼神,还是孟谦给出了答案,“无人驾驶。”

    一听到答案,两人恍然大悟。

    “今年谷歌已经正式布局无人驾驶了,而且背靠米国国防先进研究项目局,该局大量研发人员都去了谷歌,在这个领域,我不想落后。”孟谦干脆利落的表态。

    “孟总有什么具体的打算?”

    孟谦示意两人看t展示,“我们公司已经拿出了一个结论,传感器高精度地图云计算理性决策算法是最有可能实现无人驾驶的方案。

    所以想要发展无人驾驶,需要对应的镜头,对应的os图像传感器,对应的ds数字处理芯片,对应的毫米波雷达,对应的激光雷达等硬件设备以及一个有理性决策能力的算法和一个安全高速的云平台。

    也正因此,对于传统车企来说无人驾驶其实完全就是一个全新的领域,虽然最重要的依然是安全,但传统车企走的都是功能安全路线,在无人驾驶领域,功能安全是远远不够的。

    但无人驾驶算是一个全新的产业么?我认为不是,当无人驾驶真正成熟的时候,他必然会冲击传统车企,如果用户都信任无人驾驶了,愿意自己开车的人必然会减少。

    所以我今天就是想问问两位,有没有兴趣跟我们一起参与这场车企革命。”

    两人这下明白为什么孟谦同时把他们叫来了,孟谦想要搞无人驾驶,不想把赌注压在一家传统车企上,所以把两人一起叫过来完全没毛病。

    “当孟总准备进入一个行业的时候,肯定已经有所准备了吧?”王川福以对孟谦的了解很肯定的说道。

    孟谦笑了笑,示意继续看t,“刚才也说了,无人驾驶需要激光雷达和毫米波雷达,这是因为激光雷达可以准确测量视场中物体轮廓边沿与设备间的相对距离,精度可达到厘米级别,而对于激光雷达不够直接快捷的缺点,毫米波雷达又可以弥补。

    所以围绕激光雷达和毫米波雷达我们做了大量研究,针对无人驾驶,我们研制了这一款64线激光雷达,两位看这个动态图。

    激光光束从两侧透镜发出,遇到障碍物折返后经过中间透镜可以被抓去,接收器通过处理分析就可以判断障碍物。

    而所有的时间信息、控制信息、接收信号都会传到顶端的主板从而进行数据分析,底部的旋转记录器则可以记录下旋转时所在位置和旋转信息,所有原始数据通过底部数据线传送至电脑。

    至于这款产品最大的优势,就在于垂直方向有64条光束放射状射出,可以覆盖垂直方向26°的角度,抵达100-120米的检测距离,探测障碍所在位置的误差大约10左右,激光雷达每秒旋转10次,可以实现水平360°的视域覆盖,每圈输出高达13万个信息点。”

    这个东西两人还是能听懂能看懂且比较好消化的,但孟谦接下来说的就让两人觉得有一点懵逼了,“不过在我看来我们现在最大的优势是在算法上。

    据我了解,包括谷歌在内的几家无人驾驶企业都在使用深度学习进行驾驶训练,从传感器的输入直接导出控制器的输出,然而作为深度学习的创始者,我基本可以确认这种深度学习在无人驾驶领域是一个错误的方向,因为它属于相关性推理,而非因果推理。

    比如说人在下雨天会慢行,这种深度学习的逻辑就是下雨天要慢行,但它不知道下雨天为什么要慢行,那么假设我们没有给到下雪天的数据,就会出现一个情况,无人驾驶会在下雨天慢行,却在下雪天正常速度行驶,甚至可能会因为其他数据加速行驶。

    这种不知因果的算法对于驾驶安全来说是一个极大的隐患,因为驾驶过程中会有太多的未知情况需要计算机做出因果判断。

    所以我们需要在自动驾驶领域引入新的决策机制,我们找到了这样一个机制,那就是贝叶斯网络,贝叶斯网络是一个概率推理系统,贝叶斯网络在数据处理方面针对事件发生的概率以及事件可信度分析具有良好的分类效果,它具有两个决定性的优势:模块化和透明性。

    模块化的优势尤为重要,比如要更新汽车的变速箱,当变速箱被更换的时候,我们不用重写整个传动系统,只需要修改为变速箱建模的子系统,其余的都可以保持不变。

    而利用贝叶斯网络进行大量驾驶数据分析的企业,据我所知,目前只有我们大风集团一家。

    而这,就是我们的一大优势。”

    也不知道为什么,孟谦拿出两个领先技术在王川福和李叔福看来特别的正常,甚至没有半点波澜。

    孟谦其实很清楚两人的态度,看他们没什么抗拒的意思就直接亮出了目标,2010年,大风集团要进行至少10万公里的无人驾驶实验,积极抢占据人驾驶技术高地。